Manganese Superoxide Dismutase Gene Polymorphism (V16A) is Associated with Diabetic Retinopathy in Slovene (Caucasians) Type 2 Diabetes Patients

نویسندگان

  • Mojca Globočnik Petrovič
  • Ines Cilenšek
  • Daniel Petrovič
چکیده

Substantial data indicate that oxidative stress is involved in the development of diabetic retinopathy. Two candidate genes that affect the oxidative stress are manganese mitochondrial superoxide dismutase (Mn-SOD) and endothelial nitric oxide synthase (eNOS). The aim of the present study was to examine the role of the V16A polymorphism of the Mn-SOD gene and the 4a/b polymorphism of the eNOS gene in the development of diabetic retinopathy in Caucasians with type 2 diabetes. In this cross sectional case-control study 426 unrelated Slovene subjects (Caucasians) with type 2 diabetes mellitus were enrolled: 283 patients with diabetic retinopathy and the control group of 143 subjects with type 2 diabetes of duration of more than 10 years who had no clinical signs of diabetic retinopathy. A significantly higher frequency of the VV genotype of the V16A polymorphism of the Mn-SOD was found in patients with diabetic retinopathy compared to those without diabetic retinopathy (OR=2.1, 95% whereas the 4a/b polymorphism of the eNOS gene failed to yield an association with diabetic retinopathy. We may conclude that the VV genotype of the V16A polymorphism of the Mn-SOD gene was associated with diabetic retinopathy in Caucasians with type 2 diabetes, therefore it might be used as a genetic marker of diabetic retinopathy in Caucasians.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manganese Superoxide Dismutase (SOD2) Polymorphisms, Plasma Advanced Oxidation Protein Products (AOPP) Concentration and Risk of Kidney Complications in Subjects with Type 1 Diabetes

AIMS Oxidative stress is involved in the pathophysiology of diabetic nephropathy. Manganese superoxide dismutase (SOD2) catalyses the dismutation of superoxide, regulates the metabolism of reactive oxygen species in the mitochondria and is highly expressed in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, was found to be increased i...

متن کامل

A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy.

Oxidative stress has been suggested to contribute to the development of diabetic nephropathy. Manganese superoxide dismutase (MnSOD) protects the cells from oxidative damage by scavenging free radicals. The demand for antioxidants is increased by smoking, which could disturb the balance between antioxidants and radicals. The present study aimed to determine whether a valine/alanine polymorphism...

متن کامل

GSTT1 Null Genotype Is a Risk Factor for Diabetic Retinopathy in Caucasians with Type 2 Diabetes, whereas GSTM1 Null Genotype Might Confer Protection against Retinopathy

AIM Substantial data indicate that oxidative stress is involved in the development of diabetic retinopathy (DR). The aim of the present study was to investigate whether the genetic polymorphisms: polymorphic deletions of glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) and Ile105Val of the GSTP1 are associated with DR in Slovenian patients with type 2 diabetes. METHODS In this cross secti...

متن کامل

Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study.

Superoxide dismutase (SOD) plays a key role in the detoxification of superoxide free radicals. We evaluated the association of prostate cancer with genetic polymorphisms in SOD1 (CuZn-SOD; IVS3-251A>G), SOD2 [MnSOD; Ex2+24T>C (V16A)], and SOD3 (EC-SOD; IVS1+186C>T, Ex3-631C>G, Ex3-516C>T, and Ex3-489C>T), the three main isoforms of SOD. Prostate cancer cases (n = 1,320) from the screening arm o...

متن کامل

Role of Glyceraldehyde 3-Phosphate Dehydrogenase in the Development and Progression of Diabetic Retinopathy

OBJECTIVE Mitochondrial superoxide levels are elevated in the retina in diabetes, and manganese superoxide dismutase overexpression prevents the development of retinopathy. Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which activates major pathways implicated in diabetic complications, including advanced glycation end products (AGEs), protein kinase C, and hexosamine pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008